How quantitative methods influence and shape finance industry

Marek Musiela

AGH April 2019

Introduction

- Non-quantitative talk about the role quantitative methods play in finance industry.
- Focus on investment banking, hedge funds and asset managers.

Sectors

- Each sector deals with risk but in fundamentally different ways.
- They focus on, respectively, risk hedging, risk taking and risk diversification.
- Development of each sector was strongly influenced by different mathematical ideas.

Future

- At the end of the talk I will describe some challenges finance industry faces today.
- I will also attempt to list quantitative methodologies that are likely to influence and shape the future of this industry.

Business models of

- Investment Banks sell financial products and hedge (or not) risk. Price corresponds to the cost of hedging – *hedging = eliminating risk*
- Hedge Funds take risk and deliver (or not) high return – *hedging = controlling risk*
- Asset Managers diversify risk and deliver (or not) high returns. Split investment into different asset classes

Mathematical ideas

- Risk hedging payoff replication Black and Scholes
- Inter-temporal risk taking Kelly
- Cross-sectional risk taking Markowitz
- Coupled with advances in software and hardware these three ideas played a transformational role in the finance industry

Risk Taking

Tossing a coin

- A coin is tossed and you win £60 in case of 'Head' and loose £40 in case of 'Tail'. Will you accept it?
 - Expectation is positive .5x60+.5x40=10
 - Can you afford to loose £40?
 - What if you cannot afford to loose £40
 - What if the coin is not fair?
 - What if you can bet many times?

Placing many bets

- You know the history of outcomes of bets
- If the game does not change much over time you can estimate the probability of a single outcome
- What if you bet only a fraction of your wealth?
- What fraction you should choose?

Mathematical formulation

- Mathematical model developed and analysed be Kelly in 1956
- Gives the fraction of wealth you should bet in order to maximise the long-run growth rate of wealth
- Corresponds to maximization of logarithmic utility function

Kelly bet

- 1. Lose the amount b
- 2. Win b for a bet of 1 get back b+1
- Assume probability of winning is p
- The so called Kelly bet, discovered in 1950s, is a fraction of your current bankroll (wealth)

$$f = \frac{p(b+1)-1}{b}$$

However...

- Received little academic attention and was initially rejected by mainstream economists
- Proved invaluable for practical risk taking
- It underpins the business model of many quantitative investment managers
- One of them is AHL, a pioneer in the systematic trading, serving clients since 1987

Fractional Kelly

- Kelly bet is often seen as too aggressive
- May generate large drawdowns
- A smaller fraction is often used in practice
- It turns out that any such fraction is consistent with a forward power utility maximisation (Musiela, Zariphopoulou)
- In this framework risk tolerance is a linear function of wealth

Systematic risk taking

- Place many bets in a game (will buy or sell many times a single asset – for example a futures contract)
- Carefully determine bet sizes
- Identify signals indicating when to buy and when to sell
- Participate in as many games as possible

This requires

- Access to historical data of the prices
- Understanding of sizing of bets
- Development of statistical methods to identify the signals
- Construction of a portfolio in which a trade idea is applied in many markets

To make money

- You need to have a competitive advantage
 - Ability to trade as many markets as possible
 - Have systems that can support such a business model
 - To have at least 50.5% success ratio. Ideally 51%
- You need to control your risk

Momentum and correlation

- Systematic trading funds were strongly affected by the crisis
 - Classical momentum strategies did not perform well until 2014
 - Pairwise correlations increased significantly
 - Recently momentum performed well and correlations decreased
 - Systematic trading funds are doing well now

Risk Hedging

Playing roulette

- You are in a casino playing roulette.
- A person next to you proposes bet: you win £60 in case of 'Read' and loose £40 in case of 'Black'. Assume no zero, only 'Read' and 'Black' for simplicity
- Is the situation the same as before
 - The expectation is the same

Hedging your bet

 You can hedge yourself by betting £50 on the table on 'Black'. The possible outcomes are:

	Bet	Table	Total
Red	+60	-50	10
Black	-40	+50	10

- No matter what, you always win 10
- Main idea used by investment banks to price financial products – hedge risk

Risk hedging (eliminating)

- Revolution in pricing and hedging financial risk came in the 70s
- The idea was to use liquid assets traded in capital markets to create new products and sell them to the end users on the buy side
- This was a beginning of new business for investment banks

Risk hedging

- First solution to the pricing of options was reduced to solving a PDE
- In early 1980 the arbitrage free price was derived using methods from stochastic calculus
- This created a strong link between quantitative finance and stochastic calculus

Quoting Wikipedia - 1

- The Black-Scholes model was first published by Fischer Black and Myron Scholes in their 1973 paper, "The Pricing of Options and Corporate Liabilities", published in the Journal of Political Economy
- Robert C. Merton was the first to publish a paper expanding the mathematical understanding of the options pricing model, and coined the term "Black-Scholes options pricing model".

Early days

- In late 1980s very few people knew how to apply martingale methods in financial modelling
- First masters level courses were developed in the late 1980s
- If you knew how to use reflection principle to price barrier options you were doing well

The 1990s

- In the 1990s first books were published and knowledge was spreading fast
- This was also a period of rapid advances in the development of general pricing and risk management models
- In parallel the markets traded ever more complex risks

Quoting Wikipedia - 2

- Merton and Scholes received the 1997 Nobel Memorial Prize in Economic Sciences for their work
- Though ineligible for the prize because of his death in 1995, Black was mentioned as a contributor by the Swedish Academy

The 2000s

- Started with the dot-com bubble...
- Then came the financial crisis...
- Appetite for complex risk evaporated
- More focus was give to the flow business
- New challenges appeared collateral, funding, counterparty risk,....

The 2010s

- Political pressure on the banking sector remains high
- Laws and regulations adopted in the US and Europe affect the markets in different ways
- Investment banking business become less profitable

Quoting Investopedia

- The derivatives market is, in a word, gigantic, often estimated at more that \$1.2 quadrillion
- Some market analysts estimate the derivatives market at more than 10 times the size of the total world gross domestic product, or GDP
- The reason the derivatives market is so large is because there are numerous derivatives available on virtually every possible type of investment asset, including equities, commodities, bonds and foreign exchange

To make money

- You need to have good pricing and risk management systems
 - Risk in a derivative is related to the price
 - Wrong understanding of risk makes your prices very competitive (you do not charge for some risk)
- You need strong support from top management because you are under pressure from trading and sales to deliver good pricing

Risk Diversification

Risk diversification

- Harry Markowitz asked in the 1950s the following question – Why don't investors put all their money in whichever stock seems best (promises the highest expected return) ?
- He came up with the following answer –
 Because that would be too risky

Risk diversification

- He said you should instead split the amount you want to invest into many investment opportunities
- But the portfolio expected return is the weighted average of your individual stock expected returns
- Hence it will be lower than putting all your money into the stock with the highest expected return

However...

- The portfolio can have much lower risk
- The expected return and the risk have to be analysed jointly
- This observation lead to the development of the modern portfolio theory
- Sharpe ratio expected return per unit of risk

Mathematical formulation

- The relationship between expected return and risk was formulated as a convex optimization problem with constraints
- One can maximize return at a give level of risk
- Alternatively, one can minimize the risk for a given level of return

What happened next

- Markowitz's result become the basis of modern finance
- Computer power at the time (1950s) was insufficient to translate it into practical results
- Markowitz was awarded Nobel Prize in Economic Sciences in 1990
- When finally computers solved the problem, the pure Markowitz portfolio proved to be unusable

We have seen that

- Mathematics played a fundamental role in the development of investment banking business
- Statistics played a fundamental role in the development of systematic trading funds
- The three big ideas monetised risk differently and indeed transformed the industry

Current challenges

Profitability

- The average return on equity for investment in banking industry in the first half of 2017 was under 10%.
- In 2006, just before the crisis, and for many years before it was above 20%.
- Additional capital requirement introduced in recent years increase significantly the cost of capital.
- The business is less profitable.

Measures adopted

- Cut costs
 - Pressure on compensation
 - Reduction of headcount
- Refocus the business model towards activity which consumes less capital
 - Shift from complex products, which require large capital buffers, towards simpler solutions
 - Greater geographic concentration of the business away from global and towards regional
- Automate processes

Automation

- Sell side
 - Trading market making, optimal execution, OTC market, order books
 - Sales expert systems enhancing performance, client profiling
 - Booking and risk management deal processing
- Buy side
 - Arbitrage strategies discovery, implementation, sales
 - Investment processes reduction of human intervention, expert systems

Data

- Access and ability to process vast amounts of structured and unstructured data in real time is transforming financial services industry
- Methods developed by the so called AI community are looked at closely
- Some find interesting applications
- Fields of statistics and information engineering become much more relevant to finance

Mathematics

- Mathematics contributed enormously to the development of finance
- For a long period of time it underpinned development of new businesses
- More recently it has been blamed for many problems it apparently generated
- Some even say it is responsible for the financial crises

ls it true?

- Not in my opinion
- Understanding of financial risk is not easy
- This opens a door to potential abuse of modern methodology
- Modern finance is a very new field
- Mathematics attempts to capture patterns generated by human interaction

Modelling

- Mathematical and statistical modelling has a great future
- Progressively, the focus should shift from the classical ideas mentioned earlier towards the current challenges
- It should underpin development and implementation of the various expert systems
- There is a case for mathematics, statistics and information engineering to come closer together