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Introduction

•We consider the problem of unwinding a single-stock portfolio with position
q0 > 0 over the time interval [0,T ].

• The trader’s position is modeled by the process (qt)t∈[0,T ] with the dynamics

dqt = vtdt

where v = (vt)t∈[0,T ] satisfies the unwinding constraint
T∫
0

vtdt = −q0.
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Permanent vs instantaneous (temporary) market impact

It is customary to decompose market impact costs of a trade into its
permanent and temporary constituent parts
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Normal dynamics vs. log-normal dynamics

We denote by A the set of admissible controls v.
The mid-price of the stock is modeled by the process (St)t∈[0,T ], where
St = Smid

t = 1
2 ·
(
Sbid

t + Sask
t

)
dSt = σdWt + kvtdt

σ - the arithmetic volatility
k ≥ 0 - the magnitude of the permanent market impact
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Execution costs & cash account process

• Let introduce the market volume process (Vt)t∈[0,T ], which represents the
velocity of the volume traded by other agents (it does not take into account
our own trades). We assume that it is a deterministic, continuous, positive,
and bounded process.

• The price obtained by the trader for each share at time t is of the form
St + g

(
vt
Vt

)
, where g is an increasing function satisfying g(0) = 0. It models

the instantaneous market impact.

• L(ρ) = ρg(ρ) - execution cost function

•We denote by (Xt)t the cash account process modeling the amount of cash
on the trader’s account. It’s dynamics is given by

dXt = −vt

(
St + g

(
vt

Vt

))
dt = −vtStdt − VtL

(
vt

Vt

)
dt
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Assumptions on the function L : R→ R

The assumptions on the function L : R→ R are the following:

• No fixed cost, i.e., L(0) = 0,
• L is strictly convex, increasing on R+ and decreasing on R−,
• L is asymptotically super-linear, i.e., lim|ρ|→∞

L(ρ)
|ρ| = +∞.

In practical examples

L(ρ) = |ρ|1+φ or L(ρ) = |ρ|1+φ + ψ|ρ|
where the additional term ψ|ρ| models proportional costs such as the
bid-ask spread.

The initial A-Ch models correspond to a quadratic function L(ρ) = ηρ2.

6 PUBLIC



Why should permanent market impact be linear?

Let assume that the permanent market impact is modeled by the function I(·).
The dynamics of (qt ,St ,Xt) is

dqt = vtdt
dSt = σdWt + I(vt)dt
dXt = −vtStdt

There is a dynamic arbitrage if there exist t1 < t2, and a process (vt)t such that
the following conditions are satisfied:

•
∫ t2

t1
vtdt = 0,

• E [Xt2|Ft1] > Xt1.

In other words, a dynamic arbitrage corresponds to a round trip strategy on the
stock that is profitable on average.
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Linear permanent market impact guarantees no dynamic arbitrage.

• There is no dynamic arbitrage iff I(·) is a linear function.

We choose I(v) = kv with k ≥ 0.

• The permanent component of market impact can also depend on the number
of shares already traded. For instance, a model where the price dynamics is

dSt = σdWt + f (|q0 − qt |) vtdt

with f a positive function (usually decreasing), does not lead to any dynamic
arbitrage.
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Optimization problem

• Our goal is to find an optimal strategy (vt)t ∈ A to liquidate the portfolio.

• Mean-variance criterion: maximize E [XT ]− γ
2V [XT ]

•We consider an expected utility criterion. The utility function we consider is a
CARA (Constant Absolute Risk Aversion) utility function, that is, an
exponential utility function.

• Our objective function is of the form E [−exp (−γXT )]

• γ - absolute risk aversion coefficient
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Deterministic strategies

•We restrict liquidation strategies to deterministic ones Adet ⊂ A.

dSt = σdWt + kvtdt

dXt = −vtStdt − VtL
(

vt

Vt

)
dt

• The final value of the cash account process is given by

XT = X0 −
∫ T

0
vtStdt −

∫ T

0
VtL

(
vt

Vt

)
dt

= X0 + q0S0 +

∫ T

0
kvtqtdt + σ

∫ T

0
qtdWt −

∫ T

0
VtL

(
vt

Vt

)
dt

= X0 + q0S0 −
k
2

q2
0 + σ

∫ T

0
qtdWt −

∫ T

0
VtL

(
vt

Vt

)
dt

10 PUBLIC



Deterministic strategies

XT = X0 + q0S0 −
k
2

q2
0 + σ

∫ T

0
qtdWt −

∫ T

0
VtL

(
vt

Vt

)
dt

If (vt)t∈[0,T ] ∈ Adet, then XT is normally distributed with mean

E [XT ] = X0 + q0S0 −
k
2

q2
0 −

∫ T

0
VtL

(
vt

Vt

)
dt ,

and variance

V [XT ] = σ2
∫ T

0
q2

t dt .

The mean of XT can be decomposed into three parts:

E [XT ] = X0 + q0S0︸ ︷︷ ︸
MtM value

− k
2

q2
0︸︷︷︸

perm. m. i.

−
∫ T

0
VtL

(
vt

Vt

)
dt︸ ︷︷ ︸

execution costs11 PUBLIC



Moment-generating function - two sided Laplace transform of density

Let X ∼ N (µ, σ2) and γ > 0. Then

E [−exp (−γX )] = −exp
(
−γµ +

1
2
γ2σ2

)

Using moment-generating function of a Gaussian variable, we can compute
the value of the objective function:

E [−exp (−γXT )] = −exp
(
−γE [XT ] +

1
2
γ2V [XT ]

)
= −exp

(
−γ
(

X0 + q0S0 −
k
2

q2
0

))
× exp

(
γ

(∫ T

0
VtL

(
vt

Vt

)
dt +

γ

2
σ2
∫ T

0
q2

t dt

))
.
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Optimisation problem

As a consequence the problem boils down to finding a control process
(vt)t∈[0,T ] ∈ Adet minimizing∫ T

0
VtL

(
vt

Vt

)
dt +

γ

2
σ2
∫ T

0
q2

t dt .

Because vt = dqt
dt , the problem boils down to a variational problem (Bolza

problem). We need to find minimizers of the functional J defined by

J(q) =

∫ T

0

(
VtL

(
q ′(t)

Vt

)
+

1
2
γσ2q(t)2

)
dt

over the set of absolutely continuous functions q satisfying the constraints
q(0) = q0 and q(T ) = 0. (There exists a unique minimizer q∗-nonincreasing.)
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Characterisation of the optimal strategy

To characterize the optimal strategy q∗ we can use an Euler-Lagrange
characterization.

F (q) =

∫ b

a
f
(

t ,q(t),q
′
(t)
)

dt , f (·) = f (t , x , v)

fx
(

t ,q(t),q
′
(t)
)

=
d
dt

fv
(

t ,q(t),q
′
(t)
)

If L is differentiable then the Euler-Lagrange equation reduces to
p′(t) = γσ2q∗(t)

p(t) = L′
(

q∗
′
(t)

Vt

)
q∗(0) = q0

q∗(T ) = 0.
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Legendre Fenchel transform

Let H be the Legendre-Fenchel transform of the function L defined by

H(p) = sup
ρ

(ρp − L(ρ)) .

Because L is strictly convex, H is a function of class C1.

We know that p(t) = L′
(

q∗
′
(t)

Vt

)
and the L-F transform can be specified by the

condition

H ′ = (L′)−1

Then we get a characterization of the E-L system by the Hamiltonian system:
p′(t) = γσ2q∗(t)

q∗′(t) = V (t)H ′(p(t))

q∗(0) = q0

q∗(T ) = 0
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The case of quadratic execution costs

In general the solution is given by: p′′(t) = γσ2VtH ′(p(t))

We can prove that in our model the optimal deterministic strategy is the best in
class of all (deterministic/stochastic) admissible controls. (see Guéant ’s book)
Let us take L (ρ) = ηρ2. Using the characterisation H ′ = (L′)−1, the associated
Hamiltonian function is H (p) = p2

4η.
p′(t) = γσ2q∗(t),

q∗′(t) = VtH ′(p) = Vt
2ηp(t),

q∗(0) = q0,

q∗(T ) = 0.

Consequently, q∗ is the unique solution of the equation

q∗
′′
(t) =

γσ2Vt

2η
q∗(t),

satisfying the boundary conditions q∗(0) = q0 and q∗(T ) = 0.
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Classical Almgren-Chriss formula

If (Vt)t is assumed to be constant (i.e. Vt = V , ∀t ∈ [0,T ]), then we get the
classical hyperbolic sine formula of Almgren and Chriss:

q∗(t) = q0

sinh
(√

γσ2V
2η (T − t)

)
sinh

(√
γσ2V

2η T
)

Associated to this optimal trading curve, the optimal (deterministic) strategy
(v∗t )t is given by

v∗t = q∗
′
(t) = −q0

√
γσ2V

2η

cosh
(√

γσ2V
2η (T − t)

)
sinh

(√
γσ2V

2η T
) .
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Optimal trading curves for different γ parameters

S0 = 45 AC, σ = 0.6 · day−
1
2 · share−1(annual volatility 21%),q0 = 200,000 shares

V = 4,000,000 shares · day−1, η = 0.1 AC · share−1,T = 1 (day)
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Normalised average volume for BNP Paribas aggregated in 5 min bins
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Constant vs quadratic Vt = V · f (t)
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Constant vs quadratic Vt

q0 = 200,000,V = 4,000,000, σ = 0.6, η = 0.1, γ = 10−6,b = 2.9,T = 1

21 PUBLIC



Constant vs quadratic Vt

q0 = 200,000,V = 40,000,000, σ = 0.6, η = 0.1, γ = 10−6,b = 2.999,T = 1
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Extensions of the Almgren-Chriss framework

• Optimisation of different benchmark orders, e.g. optimal
participation rate for POV, target close algo,

• Different dynamics, e.g. dSt = µtdt + σtdWt + kvtdt
with µt , σt-deterministic,

• Model with constraints, e.g. minimal participation rate,

• Portfolio liquidation,

• Different liquidity costs L(ρ) = |ρ|1+φ + ψ|ρ|.
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